

VBA/VBScript
VXeRs & RedTeam

By h0ffy // @JennyLab

Contents
1. Introduction ... 3

1.1. What is VBA? ... 3

1.2. What is VBScript? .. 4

1.3. Document Objectives .. 5

1.4. Document Structure ... 5

1.5. Audience ... 5

2. VBA ... 6

2.1. Using VBA as a Scripting Language for Documents 6

2.1.1. Code Explanation: .. 7

2.1.2. Searching for {{ foto }} .. 7

2.2.3. Searching for {{ texto1 }} ... 7

2.1.4. Considerations .. 7

2.1.5. Basic Example for Understanding the Language 7

2.1.6. VBA Code Example for Calling GetProcAddress and

LoadLibrary ... 8

2.1.7. VBA Code Example for Calling GetProcAddress and
LoadLibrary ... 9

2.1.8. GDI Calls ... 9

2.1.9. Calling ntdll.dll ... 10

2.1.10. Executing JavaScript from VBA ... 11

2.1.11 Executing PowerShell from VBA .. 11

2.1.12 Running Batch from VBA ... 12

2.1.13. Executing VBScript from VBA ... 12

2.1.14. Executing VBScript from VBA: Loading .vbs 12

2.1.15. Executing VBScript from VBA: Embedded Code 12

2.1.15. VBA Injection into an Open Word Document 13

3. VBS / VBScript / Visual Basic Script .. 14

3.1. Injecting Text and Images into an Open Document 15

3.1.1. What about the Code? .. 16

3.1.2. Variable Definition ... 16

3.1.3. Text Injection ... 17

3.1.4. Image Injection .. 17

3.1.5. Customization and Improvements ... 17

3.1.6. Considerations .. 19

4. Red Team and Pentesting Uses ... 19

1. Introduction

In this document, we will explore how to use VBA (Visual Basic for

Applications) and VBScript to automate tasks and manipulate Word
documents. These scripting languages are powerful tools for developers

and IT professionals seeking to automate repetitive processes and
increase efficiency in document management. Moreover, we will delve into
scenarios related to Red Team and security testing, demonstrating how

these technologies can be used both legitimately and, eventually, in
threat-simulation contexts.

1.1. What is VBA?

VBA, or Visual Basic for Applications, is a programming language
developed by Microsoft, widely used for automating tasks within the

Microsoft Office application ecosystem. Designed to integrate natively
with programs like Word, Excel, PowerPoint, and Outlook, VBA allows
users to extend the capabilities of these tools by means of custom scripts

that interact with their objects, methods, and properties. Its usefulness
is not limited to administrative automation, but it also stands out in

security evaluations and penetration tests thanks to its flexibility and
deep access to system functions. VBA allows interaction with COM
(Component Object Model) objects and with the Windows operating

system, making it easier to manipulate Word documents and Excel
spreadsheets, send automated emails from Outlook, and create

presentations in PowerPoint. Moreover, it offers advanced capabilities to
interact with OS APIs, perform WMI (Windows Management
Instrumentation) queries, and execute external DLL library functions,

making it a powerful tool for security evaluations in corporate
environments.

A typical example of its use is creating macros in Excel to process large

volumes of data automatically. However, as with VBScript, malicious
actors have exploited this capability to insert code that performs harmful
actions, such as downloading payloads or accessing sensitive data.

Because of this, knowledge of VBA is valuable not only for legitimate task
automation, but also for identifying and mitigating potential attack
vectors in an IT security context.

Despite the risks, VBA continues to be a relevant tool in enterprise
environments, especially in legacy systems where custom automation is
still critical. Its capacity to work with external libraries and execute

dynamic code makes it attractive for advanced simulations of malicious
activities in Red Team and Pentesting scenarios.

Some fundamental concepts of VBA include the use of explicit variables
with Dim, loop handling (For, While) and conditional structures

(If...Then...Else), as well as advanced object and event manipulation.
Moreover, VBA enables calling external library functions via statements

such as Declare and PtrSafe. This makes it an indispensable tool for
system administrators, security analysts, and Red Team teams who need
to automate processes, evaluate security settings, and simulate attacks

in Windows environments.

1.2. What is VBScript?

VBScript is a light version of Visual Basic specifically designed for
creating scripts that simplify task automation in Windows systems. It is

characterized by being simpler and less powerful than VBA (Visual Basic
for Applications), yet it is very useful for implementing scripts aimed at
relatively straightforward or moderately complex tasks in environments

where advanced control or more robust tools are not required. VBScript
is widely used in the field of system administration, as it enables direct
interaction with the operating system and applications through WSH

(Windows Script Host), a runtime environment that allows scripts with
.vbs or .js extensions to be executed. In addition, VBScript can manage

files, automate system configurations, and perform basic application
control. Despite its usefulness, VBScript has fallen out of favor in recent
years due to the shift toward more modern and secure technologies, as

well as Microsoft’s restrictions to mitigate vulnerabilities—since VBScript
was once a frequent distribution vector for malware due to its ability to

run on systems with few restrictions and its easy integration with
browsers like Internet Explorer. Nevertheless, in certain legacy
environments, VBScript still finds practical use for quick automation and

lightweight maintenance scripts.

NOTE: One important detail to mention for those coming from a RedTeam
background or small “kiddies” aspiring to become one. In the real world,
where you face increasingly advanced security systems day by day,

having tools and payloads in these languages at your disposal can
determine the success or failure of an advanced attack on infrastructure.

NOTE: We assume at all times that the RedTeam-related audience
already has an arsenal and intends to enhance it; if that is not the case...

This might be a good time to start building one and get your first tips on
payloads and attack methodologies. Future sections will be added to this

document with ideas and techniques for developing frameworks and
attacks, as well as using some development frameworks (although I can’t
say "onpromise" because my personal tendency is to write them myself. I

also hold a personal dislike toward anything I’ve programmed in the past,
and such motives typically keep me away from those vile… I was once a
kiddie #script_kiddies on Arrakis ;)

1.3. Document Objectives

Master the use of VBA for advanced Word document manipulation.
Analyze practical examples integrating VBA and VBScript to solve specific
tasks. Understand how to interact with other scripting languages from

VBA. Apply best practices and consider key aspects when working with
VBA and VBScript.

1.4. Document Structure

The document is organized into sections that address various aspects of
using VBA and VBScript. Each section provides code examples along with

clear, detailed explanations, intended to facilitate the reader’s
understanding and practical application of the concepts.

1.5. Audience

The primary audience for this document includes RedTeam experts,

developers, IT professionals, and tech enthusiasts interested in learning
how to use VBA and VBScript to automate tasks and manipulate Word
documents. No prior programming experience is required, but basic

scripting and programming knowledge is recommended.

1.6. Prerequisites It is necessary to have a development environment
compatible with VBA and VBScript, such as Microsoft Office or a text

editor that supports Windows scripts. A Windows operating system is
also required to run and test the scripts.

2. VBA

2.1. Using VBA as a Scripting Language for

Documents

Let’s do a common instrumentation as one would typically do in a Word

document. To accomplish this in VBA, you can iterate through the
contents of the Word document, searching for the strings and replace
them with an image and text respectively ({{ foto }} and {{ texto1 }})

Here is an example that can help you better understand how to do it:

Sub InsertarContenido()

 Dim doc As Document

 Dim rango As Range

 Dim imagenPath As String

 Dim texto As String

 ' Asume que el documento ya está abierto

 Set doc = ActiveDocument

 ' Ruta de la imagen que quieres insertar

 imagenPath = "C:\Users\Public\\Documents\jennylogo.jpg"

 ' Texto a insertar

 texto = "JennyL4b Is Sexy!"

 ' Buscar y reemplazar {{ foto }} por la imagen

 Set rango = doc.Content

 With rango.Find

 .ClearFormatting

 .Text = "{{ foto }}"

 If .Execute Then

 ' Insertar la imagen en el lugar donde se encontro {{ foto }}

 rango.InlineShapes.AddPicture FileName:=imagenPath

 End If

 End With

 ' Buscar y reemplazar {{ texto1 }} por el texto deseado

 Set rango = doc.Content

 With rango.Find

 .ClearFormatting

 .Text = "{{ texto1 }}"

 If .Execute Then

 ' Reemplazar {{ texto1 }} por el texto

 rango.Text = texto

 End If

 End With

End Sub

2.1.1. Code Explanation:

Variable Definition: doc refers to the active document. rango is the
portion of the document where you search and replace text. imagenPath

contains the path of the image to be inserted. texto is the text that
replaces the {{ texto1 }} string.

2.1.2. Searching for {{ foto }}

Uses the Find object to look for the {{ foto }} string. When found: The
specified image in imagenPath is inserted at that position.

2.2.3. Searching for {{ texto1 }}

Similarly, looks for {{ texto1 }} and replaces it with the text specified in the
texto variable.

2.1.4. Considerations

 NOTE: Make sure the Word document is open before running the code.
The image path must be valid and accessible from the VBA code. This

code assumes there is only one occurrence of {{ foto }} and {{ texto1 }}. If
there are multiple, the code may need adjustments to iterate through all
instances.

2.1.5. Basic Example for Understanding the Language

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Sub PausarEjecucion()

 MsgBox "La ejecución se pausará durante 5 segundos"

 Sleep 5000 ' Pausa la ejecución por 5000 milisegundos (5 segundos)

 MsgBox "La ejecución ha reanudado"

End Sub

2.1.6. VBA Code Example for Calling GetProcAddress and
LoadLibrary

This example uses the GetProcAddress function to obtain the address of
a function within a loaded DLL. We will use the kernel32.dll library as an

example.

Declare PtrSafe Function LoadLibrary Lib "kernel32" Alias "LoadLibraryA" (ByVal

lpFileName As String) As Long

Declare PtrSafe Function GetProcAddress Lib "kernel32" (ByVal hModule As Long,

ByVal lpProcName As String) As Long

Declare PtrSafe Function GetModuleHandle Lib "kernel32" Alias

"GetModuleHandleA" (ByVal lpModuleName As String) As Long

Declare PtrSafe Function MessageBox Lib "user32.dll" Alias "MessageBoxA" (ByVal

hwnd As Long, ByVal lpText As String, ByVal lpCaption As String, ByVal uType As

Long) As Long

Sub CargarDLLyObtenerFuncion()

 Dim hModule As Long

 Dim pFunc As Long

 Dim resultado As Long

 ' Cargar la DLL

 hModule = LoadLibrary("kernel32.dll")

 If hModule = 0 Then

 MsgBox "Error al cargar la DLL."

 Exit Sub

 End If

 ' Obtener la dirección de la función GetTickCount

 pFunc = GetProcAddress(hModule, "GetTickCount")

 If pFunc = 0 Then

 MsgBox "Error al obtener la dirección de la función."

 Exit Sub

 End If

 ' Llamar a la funcion GetTickCount (usando la dirección de la función)

 resultado = CallFunction(pFunc)

 ' Mostrar el resultado (el número de milisegundos desde que el sistema arrancó)

 MsgBox "Resultado de GetTickCount: " & resultado

End Sub

Function CallFunction(ByVal pFunc As Long) As Long

 ' Esta función usa la dirección de la función obtenida

 ' Llamada indirecta a la función GetTickCount

 ' Esto sería una simplificación; en un entorno real, se usarían mecanismos como

"CallWindowProc" o APIs adicionales para invocar dinámicamente las funciones

 CallFunction = pFunc ' Simulación, solo para ilustrar el uso

End Function

2.1.7. VBA Code Example for Calling GetProcAddress and
LoadLibrary

This example uses the GetProcAddress function to obtain the address of
a function within a loaded DLL. We will use the kernel32.dll library as an

example.

pFunc = GetProcAddress(hModule, "GetTickCount")

hModule = GetModuleHandle("kernel32.dll")

2.1.8. GDI Calls

Declare PtrSafe Function LoadLibrary Lib "kernel32" Alias "LoadLibraryA" (ByVal

lpFileName As String) As Long

Declare PtrSafe Function GetProcAddress Lib "kernel32" (ByVal hModule As Long,

ByVal lpProcName As String) As Long

Declare PtrSafe Function CreatePen Lib "gdi32.dll" (ByVal fnPenStyle As Long,

ByVal nWidth As Long, ByVal crColor As Long) As Long

Sub CrearLapis()

 Dim hModule As Long

 Dim pCreatePen As Long

 Dim hPen As Long

 ' Cargar la librería gdi32.dll

 hModule = LoadLibrary("gdi32.dll")

 ' Obtener la dirección de la función CreatePen

 pCreatePen = GetProcAddress(hModule, "CreatePen")

 If pCreatePen <> 0 Then

 ' Crear un lápiz (solo como ejemplo, no dibuja en VBA directamente)

 hPen = CreatePen(0, 2, RGB(255, 0, 0)) ' Estilo sólido, grosor 2, color rojo

 MsgBox "Lápiz creado con éxito: " & hPen

 Else

 MsgBox "No se pudo cargar la función CreatePen."

 End If

End Sub

2.1.9. Calling ntdll.dll

To illustrate access to advanced system functions, this section presents
a practical example that uses VBA to call the ntdll.dll library. This

example shows how to dynamically load system libraries and call specific
functions, such as NtQuerySystemInformation, which provides

detailed information about the operating system’s status.

ℹ️ IMPORTANT NOTE: THERE ARE PROTECTIONS THAT LIMIT THIS;

THIS TAKES PLACE IN A SPECIFIC CONTEXT THAT ENABLES THE
EXECUTION OF THESE STEPS, AND LATER WE WILL DISCUSS THAT

Declare PtrSafe Function LoadLibrary Lib "kernel32" Alias "LoadLibraryA" (ByVal

lpFileName As String) As Long

Declare PtrSafe Function GetProcAddress Lib "kernel32" (ByVal hModule As Long,

ByVal lpProcName As String) As Long

Declare PtrSafe Function NtQuerySystemInformation Lib "ntdll.dll" (ByVal

SystemInformationClass As Long, ByVal SystemInformation As Long, ByVal

SystemInformationLength As Long, ByRef ReturnLength As Long) As Long

Sub ConsultarInformacionDelSistema()

 Dim hModule As Long

 Dim pNtQuerySystemInformation As Long

 Dim result As Long

 Dim buffer As Long

 Dim length As Long

 ' Cargar la libreria ntdll.dll

 hModule = LoadLibrary("ntdll.dll")

 ' Obtener la direccion de la función NtQuerySystemInformation

 pNtQuerySystemInformation = GetProcAddress(hModule,

"NtQuerySystemInformation")

 If pNtQuerySystemInformation <> 0 Then

 ' Llamar a NtQuerySystemInformation para obtener informacion del sistema

 result = NtQuerySystemInformation(0, buffer, 0, length)

 ' Mostrar el resultado (solo un ejemplo simple, puedes usar estructuras mas

complejas)

 MsgBox "Resultado de NtQuerySystemInformation: " & result

 Else

 MsgBox "No se pudo cargar la función NtQuerySystemInformation."

 End If

End Sub

https://emojipedia.org/information

2.1.10. Executing JavaScript from VBA

To run JavaScript from VBA, you can use the Internet Explorer
JavaScript engine (in older Windows versions) via

CreateObject("MSHTML.HTMLDocument"). Below is an example of how
you might execute JavaScript in a browser object:

This technique is most commonly used when you need to interact with a

web browser or manipulate the DOM of a page.

Dim IE As Object

Set IE = CreateObject("InternetExplorer.Application")

IE.Visible = False

IE.Navigate "about:blank"

' Ejecuta JavaScript

IE.document.parentWindow.execScript "alert('Hola desde VBA!')", "JavaScript"

2.1.11 Executing PowerShell from VBA

To run PowerShell from VBA, you can use WScript.Shell to run a
PowerShell script.

This code executes a PowerShell command directly from VBA. You can

use it to run PowerShell scripts or console commands within a VBA
environment.

Dim objShell As Object

Set objShell = CreateObject("WScript.Shell")

objShell.Run "powershell -Command ""Write-Host 'Hello from PowerShell'"""

Set objShell = Nothing

2.1.12 Running Batch from VBA

You can also run Batch scripts from VBA in a way similar to how you
would run PowerShell, using (WScript.Shell).

Here, the cmd.exe /C command runs a Batch script (or simply a console

command).

Dim objShell As Object

Set objShell = CreateObject("WScript.Shell")

objShell.Run "cmd.exe /C echo Hello from Batch"

Set objShell = Nothing

2.1.13. Executing VBScript from VBA

VBA and VBScript are very similar languages, and you can directly invoke
VBScript from VBA using CreateObject("WScript.Shell") to run a .vbs
file or the VBScript code itself.

2.1.14. Executing VBScript from VBA: Loading .vbs

This code runs a .vbs file from VBA. You can use it to run VBScript stored
in a .vbs file.

Dim objShell As Object

Set objShell = CreateObject("WScript.Shell")

objShell.Run "wscript.exe ""C:\ruta\al\script.vbs"""

Set objShell = Nothing

2.1.15. Executing VBScript from VBA: Embedded Code

This code embeds VBScript directly in VBA and runs it. You can use it to

execute VBScript without needing external files.

Dim vbScript As String

vbScript = "Set objShell = CreateObject(""WScript.Shell"")" & vbCrLf & _

 "objShell.Popup ""Hello from VBScript!""" & vbCrLf & _

 "Set objShell = Nothing"

CreateObject("WScript.Shell").Run "wscript.exe """ & vbScript & """", 0, True

2.1.15. VBA Injection into an Open Word Document

This VBA code injects text and images into an open Word document. You
can use this approach to personalize documents or templates with

dynamic content.

This code assumes that the Word document is already open and contains
placeholder markers such as {{texto1}} and {{foto}}, which will be replaced

by specific text and images.

Sub InyectarContenidoEnWord()

 Dim doc As Document

 Dim rango As Range

 Dim texto As String

 Dim imagenPath As String

 ' Asume que el documento ya está abierto

 Set doc = ActiveDocument

 ' Texto a insertar

 texto = "JennyLab Is Pwn3r"

 ' Ruta de la imagen que quieres insertar

 imagenPath = "C:\Users\JennyLab\SexyPics\imagen.jpg"

 ' Inyectar texto

 Set rango = doc.Content

 rango.Find.Text = "{{texto1}}"

 If rango.Find.Execute Then

 rango.Text = texto

 End If

 ' Inyectar imagen

 Set rango = doc.Content

 rango.Find.Text = "{{foto}}"

 If rango.Find.Execute Then

 rango.InlineShapes.AddPicture FileName:=imagenPath

 End If

End Sub

2.1.16. Summary

• JavaScript: You can use the Internet Explorer engine to run
JavaScript in VBA.

• PowerShell: Runs through WScript.Shell by launching the powers
hell command.

• Batch: Similar to PowerShell, but using the cmd.exe command.

• VBScript: You can run .vbs files or embed VBScript directly in
VBA.

These methods allow you to execute scripts or commands from other
languages within VBA, which may be useful for integrations or more

complex tasks that require an additional language.

3. VBS / VBScript / Visual Basic

Script

VBScript or Visual Basic Script is a lightweight scripting language

developed by Microsoft, designed to automate tasks within the Windows
ecosystem. Its close integration with the operating system and
applications like Microsoft Office makes it an interesting tool for

automation, application interaction, and in some cases, for security
evaluations and penetration testing. VBScript allows interaction with OS
components and applications through COM (Component Object Model)

objects. For example, you can use it to automate tasks in Word or Excel
documents, send emails via Outlook, or perform advanced operations

such as directory scanning, registry reading, and file manipulation. This
makes it appealing for Red Team and Pentesting scenarios, where its
ability to interact with system resources can be leveraged to assess

security configurations or simulate malicious activities.

A typical example is creating a Word object to modify a document. This
kind of interaction not only allows you to automate legitimate

administrative tasks, but can also be exploited by malicious actors to
insert macros or scripts that perform undesirable actions. In addition,
thanks to its compatibility with WMI (Windows Management

Instrumentation), VBScript can be used to collect system information,
such as hardware and software details, which makes it a useful tool for

reconnaissance.

Although VBScript was officially discontinued by Microsoft in browsers
like Internet Explorer, it remains available on Windows systems, keeping
it relevant for certain contexts, particularly in legacy environments. It is

important to know its syntax and capabilities not only for automation
and administration but also to identify potential attack vectors and
strengthen defenses.

Some fundamental VBScript concepts include using explicit declarations
(Dim, Set), handling conditional structures (If...Then...Else) and loops
(For, While), as well as manipulating objects via their methods and

properties. This language is an excellent starting point for anyone seeking
to understand how scripts interact with the operating system and
applications in a Windows environment, providing a solid foundation for

Red Team and Pentesting activities.

3.1. Injecting Text and Images into an Open

Document

This technique is an effective and versatile strategy in Red Team

operations. The ability to inject content into an open Word document
using VBScript offers multiple applications—from customizing
documents or templates with dynamic content to more advanced targets

related to security testing and attack simulations. As with VBA, VBScript
can directly interact with a Word object to modify its content. This
approach allows you to inject text, images, or other dynamic elements at

runtime, providing a powerful tool for automated tasks. One of the key
advantages of this technique is the ability to generate dynamic

documents tailored to specific needs. For example, in a legitimate context,
you can automate the creation of personalized reports, letters with
customer data, or any kind of business document that needs to be

generated in bulk. However, from a security testing perspective, this same
capability can be exploited to create malicious documents intended to

deceive users or analysis systems. A practical example is managing
custom templates containing dynamic content, which allows generating
seemingly authentic documents but designed to evade security controls

or execute payloads.

The ability to inject content in real time is also helpful for simulating
scenarios in which an attacker might modify a legitimate document to
insert malicious content. This includes not only text but also images,

hidden macros, or even links to external resources. By directly interacting
with an open Word document, VBScript gives granular control over the

file’s content and layout, making it an ideal tool for operations requiring
a high level of customization.

Moreover, this technique can be extended to interact with other Office
components, which broadens its usefulness in diverse environments and

scenarios. For example, it is possible to combine it with scripts to
automatically send these generated documents via email or store them in

shared locations, facilitating massive or controlled distribution. Its
integration with the Office object model makes VBScript a powerful and
flexible option for both legitimate tasks and threat simulations in a

controlled environment, making it indispensable for Red Team teams and
security professionals interested in understanding and mitigating risks

linked to automation in Office environments.

Sub InyectarContenidoEnWord()

 Dim doc As Document

 Dim rango As Range

 Dim texto As String

 Dim imagenPath As String

 ' Asume que el documento ya está abierto

 Set doc = ActiveDocument

 ' Texto a insertar

 texto = "JennyLab h4x0rs!!."

 ' Ruta de la imagen que quieres insertar

 imagenPath = "C:\ruta\a\tu\imagen.jpg"

 ' Inyectar texto

 Set rango = doc.Content

 rango.Find.Text = "{{texto1}}"

 If rango.Find.Execute Then

 rango.Text = texto

 End If

 ' Inyectar imagen

 Set rango = doc.Content

 rango.Find.Text = "{{foto}}"

 If rango.Find.Execute Then

 rango.InlineShapes.AddPicture FileName:=imagenPath

 End If

End Sub

3.1.1. What about the Code?

This VBScript allows you to inject both text and images into an open
Word document, using the COM object model to interact directly with the

file. It is a powerful and versatile technique, applicable in multiple
scenarios ranging from legitimate task automation to security
simulations in Red Team operations.

3.1.2. Variable Definition

The first step in the script is to declare and define the necessary variables:

a reference to the Word document object, the search range used to locate
placeholders, the text values to be inserted, and the path of the image to
be included in the document. These variables keep the script reusable

and flexible, easily adapting to different needs or templates.

3.1.3. Text Injection

The script looks for a specific string in the document that acts as a
placeholder, in this case {{texto1}}. Once found, this string is replaced

with the text specified in the variables. This approach is ideal for
templates that require dynamic customization, such as creating

contracts, reports, or letters. Additionally, it provides precise control over
the content’s location, ensuring the final result fits the document’s
design.

3.1.4. Image Injection

Similarly, the script looks for a placeholder string for the image, for
example {{foto}}. Once located, the script inserts the specified image from

the given path at that position. The script leverages Word’s object model
capabilities to automatically adjust the size and position of the image,

ensuring seamless integration into the document layout. This is
particularly useful for generating visually appealing documents or
automatically inserting logos, digital signatures, graphics, or other visual

elements.

3.1.5. Customization and Improvements

This approach can be expanded to handle multiple types of dynamic

content, including tables, charts, or even links to external resources. You
can also implement loops to process multiple documents automatically,
enabling you to work with large data sets or customize multiple

documents in a single process—making it valuable for both
administrative tasks and security exercises.

Red Team and Pentesting Use Cases: In a security testing context, these

types of scripts can be used to generate decoy documents containing
malicious payloads or to assess detection systems’ ability to identify
suspicious modifications in legitimate documents. The integration of

dynamic content enhances these documents’ credibility, making them
more effective in social engineering or phishing test simulations.

By combining automation and customization, leveraging Word’s object

model to create documents that meet specific needs (be they
administrative or security-related), VBScript stands out as a powerful
and versatile tool with practical applications across various

environments. Below are some examples of how VBScript can be used to
interact with Word documents.

NOTE: The following example code shows the main object on which all
content injection into an open Word document will be based:

Example:

 CreateObject("Word.Application") 'Creates an instance of the Word application

within the VBScript environment.

 CreateObject("{000209FF-0000-0000-C000-000000000046}") 'Creates an

instance of the Word application.

• Open the document: The Word document is opened with
Documents.Open and assigned to a variable for manipulation.

 Set doc = objWord.Documents.Open("C:\ruta\al\documento.docx")

• Find and replace: Similar to the VBA example, you use the Find
object to look for specific markers in the document and then insert
text or images. Insert text: You can use the InsertAfter method to

add text at the end of the document.

 doc.Content.InsertAfter "Hello kitty!! al final del documento."

3.1.6. Considerations

Both methods require that the Word file be either already open or opened
from the script.

Whether you use VBScript or VBA depends on preference, but VBA is

generally more powerful because it offers a smoother integration with
Microsoft applications. In the case of VBScript, if you want to modify

documents automatically on a machine without user interaction, you
need to ensure that Word is installed and configured correctly on that
system. If your goal is to inject content from an external source into a

document without opening it (for instance, from another file or
application), this is also possible, but it depends on interop libraries or

COM interfaces to interact with the document without opening it in Word.
This type of integration is especially useful when working with templates
or automated processes where certain parts of the document may change

dynamically, such as in reports or specialized document generators.

3.2. Red Team and Pentesting Uses

In security testing contexts, these scripts can be utilized to generate
decoy documents containing malicious payloads or to evaluate how well

detection systems identify suspicious changes in legitimate documents.
The integration of dynamic content increases these documents’

credibility, making them more effective in social engineering or phishing
simulations.

By combining automation and customization, and leveraging the Word
object model to create documents that satisfy specific needs—whether for

administrative tasks or security evaluations—VBScript emerges as a
powerful and versatile tool with practical uses in various environments.

Below are some examples of how VBScript can interact with Word
documents, for instance, showing the main example on which all content
injection in an open Word document will be based.

 NOTE: This could also be applied to other OLE objects, COM, or the

Windows shell. From a Red Team perspective, that is quite interesting for

generating payloads. Investigate, , and pwn3d.

Code:

CreateObject("Excel.Application") 'Creates an instance of the Excel application in

the VBScript environment.

CreateObject("PowerPoint.Application") 'Creates an instance of the PowerPoint

application in the VBScript environment.

CreateObject("Outlook.Application") 'Creates an instance of the Outlook application

in the VBScript environment.

CreateObject("Scripting.FileSystemObject") 'Creates an instance of the file system

for file manipulation.

CreateObject("WScript.Shell") 'Creates an instance of the Windows Shell

environment.

CreateObject("InternetExplorer.Application") 'Creates an instance of the Internet

Explorer browser.

CreateObject("ADODB.Connection") 'Creates an instance for managing database

connections.

CreateObject("MSXML2.XMLHTTP") 'Creates an instance for making HTTP requests.

CreateObject("SAPI.SpVoice") 'Creates an instance of the Windows Speech API for

text-to-speech.

CreateObject("Shell.Application") 'Creates an instance for accessing advanced file

system operations.

 NOTE: It is important to mention that you can make these calls

through PowerShell. You can even interact to work with VBScript or VBA
alongside PowerShell or .NET.

ℹ️ NOTE: For now, the document "PowerShell Language for VXerS or

RedTeam" has not been added. If it ultimately isn’t included, this

information will be part of this document.

https://emojipedia.org/information

4. Additional CLSID Example

CreateObject("{000209FF-0000-0000-C000-000000000046}") 'Word application

CreateObject("{00024500-0000-0000-C000-000000000046}") 'Excel app

CreateObject("{91493441-5A91-11CF-8700-00AA0060263B}") 'PowerPoint app

CreateObject("{0006F03A-0000-0000-C000-000000000046}") 'Outlook application

CreateObject("{0D43FE01-F093-11CF-8940-00A0C9054228}") 'FileSystemObject

CreateObject("{72C24DD5-D70A-438B-8A42-98424B88AFB8}") 'Windows Shell

CreateObject("{0002DF01-0000-0000-C000-000000000046}") 'Internet Explorer

CreateObject("{00000514-0000-0010-8000-00AA006D2EA4}") 'ADODB.Connection

CreateObject("{F5078F32-C551-11D3-89B9-0000F81FE221}") 'MSXML2.XMLHTTP

CreateObject("{96749377-3391-11D2-9EE3-00C04F797396}") 'SAPI.SpVoice

CreateObject("{13709620-C279-11CE-A49E-444553540000}") 'Shell.Application

MSOffice Example:

' Example of more CLSIDs that can be useful in different scenarios

CreateObject("{00020906-0000-0000-C000-000000000046}") ' Word.Document

CreateObject("{0002450F-0000-0000-C000-000000000046}") ' Excel.Sheet

In this list, you can integrate CLSIDs of other applications or custom
COM libraries. As you explore corporate environments, you may discover

more specific CLSIDs for controlling different Windows components or
third-party software.

